List of DNS record types

This List of DNS record types provides an overview of types of resource records (database records) stored in the zone files of the Domain Name System (DNS).

The DNS implements a distributed, hierarchical, and redundant database for information associated with Internet domain names and addresses. In these domain servers, different record types are used for different purposes.

Contents

Resource records

Type Value (decimal) Defining RFC Description Function
A
1 RFC 1035[1] address record Returns a 32-bit IPv4 address, most commonly used to map hostnames to an IP address of the host, but also used for DNSBLs, storing subnet masks in RFC 1101, etc.
AAAA
28 RFC 3596[2] IPv6 address record Returns a 128-bit IPv6 address, most commonly used to map hostnames to an IP address of the host.
AFSDB
18 RFC 1183 AFS database record Location of database servers of an AFS cell. This record is commonly used by AFS clients to contact AFS cells outside their local domain. A subtype of this record is used by the obsolete DCE/DFS file system.
APL
42 RFC 3123 Address Prefix List Specify lists of address ranges, e.g. in CIDR format, for various address families. Experimental.
CERT
37 RFC 4398 Certificate record Stores PKIX, SPKI, PGP, etc.
CNAME 5 RFC 1035[1] Canonical name record Alias of one name to another: the DNS lookup will continue by retrying the lookup with the new name.
DHCID
49 RFC 4701 DHCP identifier Used in conjunction with the FQDN option to DHCP
DLV
32769 RFC 4431 DNSSEC Lookaside Validation record For publishing DNSSEC trust anchors outside of the DNS delegation chain. Uses the same format as the DS record. RFC 5074 describes a way of using these records.
DNAME 39 RFC 2672 delegation name DNAME creates an alias for a name and all its subnames, unlike CNAME, which aliases only the exact name in its label. Like the CNAME record, the DNS lookup will continue by retrying the lookup with the new name.
DNSKEY
48 RFC 4034 DNS Key record The key record used in DNSSEC. Uses the same format as the KEY record.
DS
43 RFC 4034 Delegation signer The record used to identify the DNSSEC signing key of a delegated zone
HIP 55 RFC 5205 Host Identity Protocol Method of separating the end-point identifier and locator roles of IP addresses.
IPSECKEY
45 RFC 4025 IPSEC Key Key record that can be used with IPSEC
KEY
25 RFC 2535[3] and RFC 2930[4] key record Used only for SIG(0) (RFC 2931) and TKEY (RFC 2930).[5] RFC 3445 eliminated their use for application keys and limited their use to DNSSEC.[6] RFC 3755 designates DNSKEY as the replacement within DNSSEC.[7] RFC 4025 designates IPSECKEY as the replacement for use with IPsec.[8]
KX
36 RFC 2230 Key eXchanger record Used with some cryptographic systems (not including DNSSEC) to identify a key management agent for the associated domain-name. Note that this has nothing to do with DNS Security. It is Informational status, rather than being on the IETF standards-track. It has always had limited deployment, but is still in use.
LOC 29 RFC 1876 Location record Specifies a geographical location associated with a domain name
MX 15 RFC 1035[1] mail exchange record Maps a domain name to a list of message transfer agents for that domain
NAPTR 35 RFC 3403 Naming Authority Pointer Allows regular expression based rewriting of domain names which can then be used as URIs, further domain names to lookups, etc.
NS
2 RFC 1035[1] name server record Delegates a DNS zone to use the given authoritative name servers
NSEC
47 RFC 4034 Next-Secure record Part of DNSSEC—used to prove a name does not exist. Uses the same format as the (obsolete) NXT record.
NSEC3
50 RFC 5155 NSEC record version 3 An extension to DNSSEC that allows proof of nonexistence for a name without permitting zonewalking
NSEC3PARAM
51 RFC 5155 NSEC3 parameters Parameter record for use with NSEC3
PTR
12 RFC 1035[1] pointer record Pointer to a canonical name. Unlike a CNAME, DNS processing does NOT proceed, just the name is returned. The most common use is for implementing reverse DNS lookups, but other uses include such things as DNS-SD.
RRSIG
46 RFC 4034 DNSSEC signature Signature for a DNSSEC-secured record set. Uses the same format as the SIG record.
RP
17 RFC 1183 Responsible person Information about the responsible person(s) for the domain. Usually an email address with the @ replaced by a .
SIG
24 RFC 2535 Signature Signature record used in SIG(0) (RFC 2931) and TKEY (RFC 2930).[7] RFC 3755 designated RRSIG as the replacement for SIG for use within DNSSEC.[7]
SOA
6 RFC 1035[1] start of [a zone of] authority record Specifies authoritative information about a DNS zone, including the primary name server, the email of the domain administrator, the domain serial number, and several timers relating to refreshing the zone.
SPF 99 RFC 4408 Sender Policy Framework Specified as part of the SPF protocol in preference to the earlier provisional practice of storing SPF data in TXT records. Uses the same format as the earlier TXT record.
SRV 33 RFC 2782 Service locator Generalized service location record, used for newer protocols instead of creating protocol-specific records such as MX.
SSHFP
44 RFC 4255 SSH Public Key Fingerprint Resource record for publishing SSH public host key fingerprints in the DNS System, in order to aid in verifying the authenticity of the host.
TA
32768 N/A DNSSEC Trust Authorities Part of a deployment proposal for DNSSEC without a signed DNS root. See the IANA database and Weiler Spec for details. Uses the same format as the DS record.
TKEY
249 RFC 2930 secret key record A method of providing keying material to be used with TSIG that is encrypted under the public key in an accompanying KEY RR.[9]
TSIG
250 RFC 2845 Transaction Signature Can be used to authenticate dynamic updates as coming from an approved client, or to authenticate responses as coming from an approved recursive name server[10] similar to DNSSEC.
TXT
16 RFC 1035[1] Text record Originally for arbitrary human-readable text in a DNS record. Since the early 1990s, however, this record more often carries machine-readable data, such as specified by RFC 1464, opportunistic encryption, Sender Policy Framework (although this provisional use of TXT records is deprecated in favor of SPF records), DomainKeys, DNS-SD, etc.

Other types and pseudo resource records

Other types of records simply provide some types of information (for example, an HINFO record gives a description of the type of computer/OS a host uses), or others return data used in experimental features. The "type" field is also used in the protocol for various operations.

Code Number Defining RFC Description Function
* 255 RFC 1035[1] All cached records Returns all records of all types known to the name server. If the name server does not have any information on the name, the request will be forwarded on. The records returned may not be complete. For example, if there is both an A and an MX for a name, but the name server has only the A record cached, only the A record will be returned. Sometimes referred to as "ANY", for example in Windows nslookup and Wireshark.
AXFR 252 RFC 1035[1] Authoritative Zone Transfer Transfer entire zone file from the master name server to secondary name servers.
IXFR
251 RFC 1995 Incremental Zone Transfer Requests a zone transfer of the given zone but only differences from a previous serial number. This request may be ignored and a full (AXFR) sent in response if the authoritative server is unable to fulfill the request due to configuration or lack of required deltas.
OPT
41 RFC 2671 Option This is a "pseudo DNS record type" needed to support EDNS

Obsolete record types

Progress has rendered obsolete some of the originally-defined record-types. Of the records listed at IANA, some have limited use, for various reasons. Some are marked obsolete in the list, some are for very obscure services, some are for older versions of services, and some have special notes saying they are "not right".

RP(17) may be used for certain human-readable information regarding a different contact point for a specific host, subnet, or other domain level label separate than that used in the SOA record.

Further reading

References

  1. ^ a b c d e f g h i Paul Mockapetris (November 1987). "RFC 1035: Domain Names - Implementation and Specification". Network Working Group of the IETF (Internet Engineering Task Force). p. 12. http://tools.ietf.org/html/rfc1035#page-12. 
  2. ^ "RFC 3596: DNS Extensions to Support IP Version 6". The Internet Society. October 2003. http://tools.ietf.org/html/rfc3596#section-2. 
  3. ^ RFC 2535, §3
  4. ^ RFC 3445, §1. "The KEY RR was defined in [RFC 2930]..."
  5. ^ RFC 2931, §2.4. "SIG(0) on the other hand, uses public key authentication, where the public keys are stored in DNS as KEY RRs and a private key is stored at the signer."
  6. ^ RFC 3445, §1. "DNSSEC will be the only allowable sub-type for the KEY RR..."
  7. ^ a b c RFC 3755, §3. "DNSKEY will be the replacement for KEY, with the mnemonic indicating that these keys are not for application use, per [RFC3445]. RRSIG (Resource Record SIGnature) will replace SIG, and NSEC (Next SECure) will replace NXT. These new types completely replace the old types, except that SIG(0) [RFC2931] and TKEY [RFC2930] will continue to use SIG and KEY."
  8. ^ RFC 4025, Abstract. "This record replaces the functionality of the sub-type #4 of the KEY Resource Record, which has been obsoleted by RFC 3445."
  9. ^ RFC 2930, §6. "... the keying material is sent within the key data field of a TKEY RR encrypted under the public key in an accompanying KEY RR [RFC 2535]."
  10. ^ RFC 2845, abstract
  11. ^ RFC 1123 section 2.2, 5.2.12, 6.1.3.6